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We study the spin Hall effect �SHE� in graphene using a realistic multiorbital tight-binding model that
includes the atomic spin-orbit interaction. The SHE is found to be induced by the spin-dependent Aharonov-
Bohm phase. In the metallic case, the calculated values for the spin Hall conductivity �SHC� are much smaller
than the quantized Hall conductivity for realistic parameter values of metallic graphene. In the insulating case,
quantization of the SHC is violated due to the multiorbital effect. The present study suggests that the SHE in
a honeycomb lattice is enhanced by chemical doping, such as the substitution of carbon atoms with boron
atoms.
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The recent discovery of graphene has stimulated much
interest in electron transport in graphene due to its uncon-
ventional electronic structure.1 The crystal structure of
graphene is a two-dimensional honeycomb lattice of carbon
atoms. In the absence of the spin-orbit interaction �SOI�, the
band structure of graphene is described in terms of massless
Dirac fermions at the edges �K and K� points� of the Bril-
louin zone. Due to a nonzero Berry’s phase �a geometric
quantum phase�,2 a striking “half-integer” quantum Hall ef-
fect is realized in graphene.3,4 The nature of the quantum
Hall effect near the massless Dirac point has been studied
theoretically.5–10 Concerning transport phenomena in
graphene, the emergence of a sizable spin Hall effect �SHE�,
which is a phenomenon where a spin current flows perpen-
dicular to an applied electric field, had been predicted
theoretically.11,12 In particular, Kane and Mele11 have dem-
onstrated that the SOI generates an energy gap at the Dirac
point, and the “quantum SHE” is expected to appear in
insulating graphene.

Recently, the theory of the intrinsic SHE caused by the
Berry phase in zincblende semiconductors13 or by a uniform
SOI such as the Rashba SOI in a two-dimensional electron
gas14 has been attracting much interest. Quite recently, the
SHE has also been observed in the simple metal Al �Ref. 15�
and the transition metal Pt.16 The spin Hall conductivity
�SHC� reported for Pt is 240�� /e��� cm�−1 at room tempera-
ture, which is much larger than that of semiconductors. The
huge SHC in Pt has been explained theoretically by Kontani
et al. in terms of the atomic SOI and a realistic tight-binding
�TB� model that includes interorbital hopping integrals.17–19

They further showed that the so-called current vertex correc-
tions �CVCs� have little effect on the SHC in transition
metal, in contrast to that in semiconductors with the Rashba
SOI.20

The successful reproduction of the experimental values of
the SHC in transition metals by the TB model with the
atomic SOI encouraged us to apply this model to other sys-
tems. Since the electronic structure of graphene is well re-
produced by the realistic TB model, we use this model to
calculate the SHCs in both undoped and doped �metallic�
graphene, and compare the results with those calculated us-
ing the Kane-Mele model,11 which contains only a pz orbital

and an effective SOI to produce an energy gap at the Fermi
energy.

In the present Rapid Communication, we adopt a realistic
multiorbital �s, px, py, and pz orbitals� TB model with the
atomic SOI on a honeycomb lattice, and use the Kubo-Streda
formula21 to calculate the SHC. It should be noted that the px
and py orbitals contribute to the SHC because they are mixed
with the pz orbital via the atomic SOI. By calculating the
SHC as a function of the Fermi energy, we find that the SHC
becomes large in the energy region where the px and py or-
bitals are dominant, far away from the Dirac point. The ef-
fect of the CVC, which is calculated in the self-consistent
Born approximation, is appreciable and causes the SHC to
double compared to that without the CVC, while the quali-
tative behavior of the SHC remains unchanged. In the case of
insulating graphene, SHC is not quantized because sz is not
conserved due to the SOI between the px �py� and pz orbitals.

The Hamiltonian for electrons on the honeycomb lattice,
which is decomposed into A and B sublattices, is given as

Ĥ= Ĥ0+ ĤSO where Ĥ0 and ĤSO are the kinetic and SOI

terms, respectively. Ĥ0 is given as

Ĥ0 = �
i�A�B�

�
j�B�A�

�
���

tij
��ci�

�†cj�
� , �1�

where tij
�� denotes the nearest-neighbor hopping integral be-

tween the � orbital at site i and the � orbital at site j, and �
denotes the spin. The Slater-Koster parameters in the TB
model are taken as ss�=−0.86, sp�=1.14, pp�=1.0, and
pp�=−0.5 in units of pp��5.7 eV�.22 Hereafter, we take
pp� and the lattice constant a�2.55 Å� as the units for en-
ergy and length, respectively. We also put �=1.

ĤSO represents the atomic SOI given as

ĤSO = ��
i

li · si, �2�

where � is the interaction constant, and l and s are the orbital

and spin angular momentum, respectively. ĤSO has off-

diagonal elements such as �px	�ĤSO�py	�= 
 i� /2,

�px	�ĤSO�pz
�= 	� /2, and �py	�ĤSO�pz
�=−i� /2, where
�l�� represents an electron with orbital l and spin �= 	1.
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According to Streda,21 the intrinsic SHC at T=0 is given
as �xy

z =�xy
zI +�xy

zII, where

�xy
zI �E� =

1

2�N
�

k
Tr�Ĵx

SĜRĴy
CĜA��=E, �3�

�xy
zII�E� =

− 1

4�N
�

k
	

−�

E

d�

Tr
Ĵx
S�ĜR

��
Ĵy

CĜR − Ĵx
SĜRĴy

C�ĜR

��
− �R ↔ A�� .

�4�

Here, ĜR�A� is the retarded �advanced� Green’s function given

as ĜR�A��k ,��= ��− Ĥ+ �−�i�̂�−1, where �̂ is the matrix form
of the imaginary part of the self-energy �damping rate� due to
scattering by local impurities. The Green’s functions are rep-
resented by 1616 matrices in the momentum representa-
tion.

The matrix forms of the charge and sz-spin current opera-

tors for the � direction ��=x ,y� are given by Ĵ�
C=−e �Ĥ

�k�
and

Ĵ�
S =− 1

2e �Ĵ�
C ,sz, respectively. In the SHC, �xy

zI and �xy
zII repre-

sent the “Fermi-surface term” and the “Fermi-sea term,” re-
spectively. In this Rapid Communication, we take N=900
900 k-point meshes in the numerical calculations.

We first neglect the CVC and assume that the damping

matrix is diagonal and is independent of orbital �̂��=����.
Figures 1�a� and 1�b� give the calculated results of the SHC
as a function of the position of the Fermi energy EF and the
band structure of graphene for �=0.1 and �=0.01 �in units

of pp��, respectively. In Fig. 1�a�, the solid and dotted lines
denote �xy

z and �xy
zII, respectively. We observe that the SHC

�xy
z is large in energy regions where the bands are nearly

degenerate, while �xy
zII exhibits peak structures in these en-

ergy regions. In the metallic region, the magnitude of �xy
zI is

much larger than that of �xy
zII.

The insets of Figs. 1�a� and 1�b� show the SHC and the
band structure near the Dirac point of graphene, i.e., EF=0.
The Dirac point at K is split by the atomic SOI, and forms an
energy gap with �D=0.0013 when �=0.1.

In order to study the SHE in graphene, we estimate the
value of � to be about 0.005 by comparing the longitudinal
conductivity �xx calculated in the present model with the
experimental resistivity observed for doped graphene �
=1 /�xx=100 �.23 In this case, the number of electrons n per
atom of doped graphene is n=3.998, which corresponds to
EF=−0.05 in the present model. The value of � of the atomic
SOI at the Dirac point in graphene is estimated to be �
=0.001,24,25 which corresponds to an energy gap �D=2
10−7��10−6 eV�. The SHC calculated by using �=0.001
and �=0.005, and by neglecting the energy dependence of �,
is �xy

z �310−5�e /2�a� at the Dirac point. This value is
much smaller than the quantized SHC e /2�a, since ���D
and the graphene is metallic for these parameter values.

The SHC may increase in doped graphene; for example,
the value of �xy

z increases to �0.1�e /2�a� at EF=−0.76,
which can be realized by substituting 50% carbon atoms with
boron atoms. Although this situation may be virtual, similar
electronic state may be realized by graphite intercalation.
Since 1�e /2�a��1500�� /e��� cm�−1 in the present case
�a=2.55 Å�, the SHC �150�� /e��� cm�−1 at EF=−0.76 is
the same order as that of Pt.

Now we give an intuitive explanation of why the SHE is
induced by the atomic SOI. The calculated � dependence of
the SHC is shown in Fig. 2. We see that �xy

z �� and �xy
z

��2 for n=3.2 �EF=−1� and n=4 �EF=0�, respectively. The
results may be interpreted as follows. Since the px and py
orbitals are dominant at EF�−1, an anticlockwise motion of
an up-spin electron on py orbitals in a honeycomb lattice may
be given by Fig. 3�a�. The arrows in the figure represent an
interorbital transition induced by the atomic SOI. In the pro-
cess py→px �px→py�, the SOI works once and yields a fac-
tor �−�i� /2, which is the first order of �. The corresponding
motion of an electron yields a factor i=e2�i/4, which can be
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FIG. 1. �a� SHC �xy
zI +�xy

zII �solid line� and �xy
zII �dotted line�, and

�b� band structure through k points K= �0,4� /3�, �= �0,0�, and
M = �� /�3,�� against energy for atomic SOI �=0.1 and damping
�=0.01 �in units of pp��. The insets show the SHC and band struc-
ture near the Dirac point.
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FIG. 2. �xy
z against � with �=0.01 �in units of pp�� for n=3.2

�EF=−1� �solid line� and for n=4 �EF=0� �dotted line�,
respectively.
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interpreted as the Aharonov-Bohm �AB� phase factor e2�i�/�0

��0=hc / �e��, where � is effective magnetic flux �=�A ·dr
=�0 /4 through a honeycomb lattice. Since the sign of the
effective magnetic flux is opposite for down-spin electrons,
up- and down-spin electrons move in opposite directions un-
der an electric field. By this process, �xy

z �� is realized in the
region where the px and py orbitals are dominant, as indi-
cated by the solid line in Fig. 2.

At EF�0 the pz orbital is dominant, and an important
process of an up-spin electron on pz orbitals may be given by
Fig. 3�b�. Solid arrows and a dotted arrow represent the in-
terorbital transitions induced by the SOI and by hopping,
respectively. The SOI should operate at least twice while the
electron moves around the honeycomb structure, since the
spin is flipped in the transitions pz→py and px→pz via the
SOI in this case. The corresponding motion yields a factor of
i=e2�i/4, which corresponds to the AB phase and an effective
magnetic flux. By this process, �xy

z ��2 is realized in the
region where the pz orbital is dominant at the Fermi level, as
indicated by the dotted line in Fig. 2. Since ��1, the SHC
near EF=0 is about 10 times smaller than that near EF=−1.

Up until now, the CVCs have not been taken into account.
However, the CVCs may play an important role for the SHC
in graphene, as discussed in Ref. 12 for the Kane-Mele
model. In order to study the role of the CVC in the present
four-orbital model, we employ the self-consistent Born ap-

proximation, where orbital-dependent damping �̂��=�����

is given by

���E� = niI
2 1

2Ni
�

k
�Ĝ��

A �k,E� − Ĝ��
R �k,E�� , �5�

where ni and I are the density of impurities and impurity

potentials, respectively. The total current �Ĵy
C̃= Ĵy

C+�Ĵy
C� with

the CVC ��Ĵy
C� is given by the Bethe-Salpeter equation:

Ĵy
C̃�k,�� = Ĵy

C�k� +
niI

2

N
�
k�

ĜR�k�,��Ĵy
C̃�k�,��ĜA�k�,�� ,

�6�

which is solved self-consistently. Here, we put niI
2=0.02, for

which the experimental value of resistivity23 �=1 /�xx
=100 � at EF=−0.05 is realized in the present calculation.
The CVC part for the Fermi-surface term is obtained from

��xy
zI �E� =

1

2�N
�

k
Tr�Ĵx

SĜR�Ĵy
CĜA��=E, �7�

and the total SHC with the CVC is given by �̃xy
zI =�xy

zI

+��xy
zI .

The calculated results of �xy
zI and �̃xy

zI near the Dirac point
are shown in Fig. 4 for �=0.1, which makes �D=0.0013 at
the Dirac point. The numerical results for �E��0.004 are
omitted because of poor convergence. We note that �̃xy

zI =0 in
the insulating system �EF=0�. We see that �̃xy

zI with the CVC
is almost double �xy

zI without the CVC. Although the behav-
ior of �xy

zI is consistent with the results of Sinitsyn et al.,12

�̃xy
zI is considerably smaller than that obtained by Sinitsyn et

al. We consider that the disagreement comes from the differ-
ence between two models. The reason why the CVC remains
for the atomic SOI in a honeycomb lattice is that the Hamil-

tonian breaks inversion symmetry Ĥ���k�� Ĥ���−k�. If

Ĥ���k�= Ĥ���−k� is satisfied, the CVC vanishes identically.
We note that the CVC is absent for the Fermi–sea term in the
Born approximation in the present model.

In the Kane-Mele model, the SHE �xy
z =e /2� is quantized

at the Dirac point of graphene.11 In order to compare with
their results, we calculate �xy

z in the energy gap by taking the
limit �→0, which corresponds to insulating graphene. We
obtain �xy

zI =0 and �xy
zII�1.2e /2� at EF=0 for �=0.4. The

reason for the violation of the quantization is that sz is not
conserved due to the SOI in the present model.26,27

So far we have neglected the effect of lattice deformation
�curvature effect�, which was pointed out to be important for,
e.g., carbon nanotubes.25,28,29 The curvature effect induces a
hopping ��t� between the pz orbital and px �py� orbital. �t is
estimated as �0.01 in graphene30 and �0.1 in a nanotube31

in units of pp�. The lowest order of the curvature effect on
SHC �xy curv

z is estimated as ��t�2�, where a denominator of
order 1 eV is omitted. Since the SHC �xy int

z without the
curvature effect is the order of �2, the ratio �xy curv

z /�xy int
z

�0.1 in the graphene, and �10 in the nanotube by adopting
a realistic value of �=0.001 for the SOI of carbon atoms. We
expect that the curvature effect for the SHC may be small in
graphene but dominant in the nanotube.

In summary, we have studied the SHC in a two-
dimensional honeycomb lattice using a realistic band struc-
ture consisting of s, px, py, and pz orbitals with the atomic
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FIG. 3. Effective AB phase in honeycomb lattice derived by a
motion of an up-spin electron �a� on mainly px and py orbitals, and
�b� on mainly pz orbital.

σzI
xy

λ=0.1
σzIxy

σzIxy
~

E /(ppσ)

[e
/2

πa
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.05 -0.04 -0.03 -0.02 -0.01 0

FIG. 4. Total �̃xy
zI �solid line� with the CVC and �xy

zI �dotted line�
without the CVC for �=0.1 and �D=0.0013.
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SOI. The estimated SHC for a realistic value of the atomic
spin-orbit coupling � and constant damping � for the metal-
lic graphene at the Dirac point is considerably small. We
predict that the SHC will be large when the Fermi level is
shifted to EF=−0.76 ��−4.3 eV�, where the px and py orbit-
als are dominant at the Fermi level. In the self-consistent
Born approximation, the SHC �̃xy

zI with the CVC is almost
double the SHC without the CVC. The obtained value of �̃xy

zI

is considerably smaller than that of the Kane-Mele

model.11,12 In the case of insulating graphene, the obtained
SHC �xy

zII is not quantized because sz is not conserved due to
the SOI.
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